Using equivariant obstruction theory in combinatorial geometry
نویسندگان
چکیده
منابع مشابه
Using Equivariant Obstruction Theory in Combinatorial Geometry
A significant group of problems coming from the realm of Combinatorial Geometry can only be approached through the use of Algebraic Topology. From the first such application to Kneser’s problem in 1978 by Lovász [13] through the solution of the Lovász conjecture [1], [8], many methods from Algebraic Topology have been used. Specifically, it appears that the understanding of equivariant theories...
متن کاملusing game theory techniques in self-organizing maps training
شبکه خود سازمانده پرکاربردترین شبکه عصبی برای انجام خوشه بندی و کوانتیزه نمودن برداری است. از زمان معرفی این شبکه تاکنون، از این روش در مسائل مختلف در حوزه های گوناگون استفاده و توسعه ها و بهبودهای متعددی برای آن ارائه شده است. شبکه خودسازمانده از تعدادی سلول برای تخمین تابع توزیع الگوهای ورودی در فضای چندبعدی استفاده می کند. احتمال وجود سلول مرده مشکلی اساسی در الگوریتم شبکه خودسازمانده به حسا...
Combinatorial Problems in Geometry and Number Theory
In a previous paper (given at the International Congress of Mathematicians at Nice 1970) entitled "On the application of combinatorial analysis to number theory geometry and analysis", I discussed many combinatorial results and their applications . I will refer to this paper as I (as much as possible I will try to avoid overlap with this paper) . First I discuss those problems mentioned in I wh...
متن کاملCanonical equivariant extensions using classical Hodge theory
In [4], Lin and Sjamaar show how to use symplectic Hodge theory to obtain canonical equivariant extensions of closed forms in Hamiltonian actions of compact connected Lie groups on closed symplectic manifolds which have the strong Lefschetz property. In this paper, we show how to do the same using classical Hodge theory. This has the advantage of applying far more generally. Our method makes us...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Topology and its Applications
سال: 2007
ISSN: 0166-8641
DOI: 10.1016/j.topol.2007.04.007